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Matrix Multiplication on Linear Bidirectional Systolic Arrays

E. I. Milovanović, B. M. Randjelović, I. Ž. Milovanović, M. K. Stojčev

Abstract: This paper addresses the problem of rectangular matrix multiplication on bidirec-
tional linear systolic arrays (SAs). We analyze all bidirectional linear SAs in term of number of
processing elements, execution time and efficiency. We conclude that the efficiency depends on
the relation between loop boundaries in systolic algorithm (i.e. matrix dimensions). We point
out which SA is the best choice depending on the relation between matrix dimensions.
Keywords: matrix multiplication, linear systolic arrays, efficiency.

1 Introduction

Matrix multiplication plays a central role in numerical linear algebra, since one has to com-
pute this product in several stages of almost all numerical algorithms, as well as in many
technical problems, especially in the area of digital signal processing, pattern recognition,
plasma physics, weather prediction, etc. Therefore, finding an efficient algorithm for per-
forming these computations is at the focus of interest of many researchers. Matrix mul-
tiplication is a very regular computation and lends itself well to parallel implementation.
Regular structures, such as systolic arrays (SAs), are well suited for matrix multiplication
and are also amenable to VLSI implementation because of simple and regular design, and
nearest-neighbor communications. A systolic system is a network of processing elements
(PEs) that rhythmically compute and pass data through the system. Once a data item is
brought from the memory, it can be used effectively in each PE as it passes while being
“pumped” from cell to cell along the array.

Systolic arrays have been designed for a wide variety of computationally intensive prob-
lems in signal processing, numerical problems, pattern recognition, database and dictionary
machines, graph algorithms etc. Systolic arrays implemented in silicon chips are typically
laid out in a linear array or bidimensional grid of cells. One dimensional or linear systolic
arrays are especially popular because of low number of I/O pins required for the intercon-
nection with the ”outside world”.

To handle matrix multiplication, 2D and 1D systolic arrays have been proposed. Matrix
multiplication on 2D arrays has been extensively studied. Most of the 1D arrays proposed
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for matrix multiplication are with one-dimensional links. However, these arrays require de-
lay elements between successive processing elements, since input data have to pass through
the array with different speed. This paper deals with multiplication of rectangular matrices
on bidirectional linear systolic arrays (BLSA) with two-dimensional links. These arrays do
not require delay elements for implementation of matrix multiplication.

Since matrix multiplication is a three-dimensional problem and BLSA is suitable for
two-dimensional problems, the computation is performed by repeated computation of two-
dimensional tasks: a) product of a matrix and column-vector, b) product of row-vector
and matrix, or c) outer product of column-vector and row-vector. Each of the methods is
explained and the corresponding systolic algorithms and BLSA that implement them are
given in this paper. Then, we analyze obtained systolic arrays in term of efficiency.

2 Background

Let A = (aik)N1×N3 and B = (bk j)N3×N2 be two rectangular matrices. Their product can
obtained according to the following well-known recurrence equation

c(k)i j := c(k−1)
i j +aikbk j, (1)

for i = 1,2, . . . ,N1, j = 1,2, . . . ,N2 and k = 1,2, . . . ,N3. For systolic implementation of this
product, the following algorithm can be used.

Algorithm 1
for k := 1 to N3 do

for j := 1 to N2 do
for i := 1 to N1 do

a(i, j,k) := a(i, j−1,k);
b(i, j,k) := b(i−1, j,k);
c(i, j,k) := c(i, j,k−1)+a(i, j,k)∗b(i, j,k);

where a(i,0,k)≡ aik, b(0, j,k)≡ bk j, c(i, j,0)≡ 0, ci j ≡ c(i, j,N3).
Matrix multiplication problem, and consequently, Algorithm 1, is a three-dimensional.

According to Algorithm 1 orthogonal two-dimensional (2D) SAs can be synthesized (see,
for example [4, 7, 12, 13, 19, 20, 21]). If in Algorithm 1 one of the dimensions N1,N2
or N3 is equal 1, 2D orthogonal SAs degrade to 1D bidirectional SAs suitable for imple-
mentation of matrix-vector product. This fact can be used to compute matrix product on
1D bidirectional SAs iteratively, by repeating the procedure appropriately number of times.
Our goal is to design regular BLSA with optimal number of PEs for a given problem size
which implements matrix multiplication. Also, the computation time should be minimized
for a given number of PEs.

3 Mathematical models and systolic algorithms

There are several ways to compute matrix product that can be used to design BLSA:
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1) To view it as a product of matrix A and column-vectors of matrix B, i.e.

C = [C⃗·1 C⃗·2 . . .C⃗·N2 ] = [AB⃗·1 AB⃗·2 . . .AB⃗·N2 ], (2)

where B⃗· j and C⃗· j are row-vectors of the corresponding matrices. In this case the
basic computation of the BLSA would be C⃗·1 = A · B⃗·1, and the resulting matrix C can
be obtained by repeating the computation of this type N2 times.

2) or
C = A ·B = [C⃗1· C⃗2· . . .C⃗N1·]

T = [⃗A1·BA⃗2·B . . . A⃗N1·B]
T [C⃗1· C⃗2· . . .C⃗N1·]

T (3)

where A⃗i· and C⃗i· are column-vectors of the corresponding matrices. In this case
basic computation performed by the BLSA is C⃗1· = A⃗1· ·B and it can be viewed as a
product of two matrices of dimension 1×N3 and N3×N2. The resulting matrix C can
be obtained by repeating the computation of this type N1 times.

3) and

C =
N3

∑
k=1

C(k) =
N3

∑
k=1

A⃗·kB⃗k· (4)

In this case basic computation performed by the BLSA is C(1) = A⃗·1 · B⃗1· and it can be
viewed as a product of two matrices of order N1 ×1 and 1×N2. The resulting matrix
C can be obtained by repeating the computation of this type N3 times.

According to (2), (3) and (4) four bidirectional linear systolic arrays, denoted as SA1,
SA2, SA3 and SA4, that compute matrix product can be obtained. Here we will omit the
procedure for SA synthesis since it is similar to that described in [2]. Instead, we will
give exact formulas for the synthesis of each BLSA that implements corresponding matrix
multiplication algorithm.

3.1 The array SA1

The first array, SA1, computes C⃗·1 = A · B⃗·1. The systolic algorithm that corresponds to this
computation is is obtained from the Algorithm 1 by substituting N2 = 1 (i.e. for j = 1). The
array SA1 is obtained for the direction µ⃗ = [101]T as degenerated 2D orthogonal SA (see
for example [1], [2], [4], [13], [19], [21]). In order to minimize space parameters of SA1
the systolic algorithm should be adjusted to the projection direction vector µ⃗ = [101]T . The
algorithm adjusted over index variable i obtained from Algorithm 1 by putting j = 1 has
the following form

Algorithm 2
for k := 1 to N3 do

for i := 1 to N1 do
a(i,1, i+ k−1) := a(i,0, i+ k−1);
b(i,1, i+ k−1) := b(i−1,1, i+ k−1);
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c(i,1, i+ k−1) := c(i,1, i+ k−2)+a(i,1, i+ k−1)∗b(i,1, i+ k−1);

where a(i,0,k+N3)≡ a(i,0,k)≡ aik, b(0, j,k+N3)≡ b(0, j,k)≡ bk j, c(i,1, i−1)≡ c(0)i1 ≡
0, for each i = 1,2, . . . ,N1 and k = 1,2, . . . ,N3.

Denote by PE 7→
[

x
y

]
the PE position in the projection plane. Similarly, denote by

a(i, j,k) 7→
[

x
y

]
a
, b(i, j,k) 7→

[
x
y

]
b

and c(i, j,k) 7→
[

x
y

]
c

the initial (x,y) positions of

elements of the corresponding matrices A, B and C, respectively.
The array SA1 is obtained according to the following formulas

PE 7→
[

x
y

]
=

[
k−1

1

]
,

a(i,0, i+ k−1) 7→
[

x
y

]
a

=

[
k−1

3−2i− k

]
+ r1N̄1

[
0
1

]
,

b(0,1, i+ k−1) 7→
[

x
y

]
b

=

[
2i+2k−3

1

]
+ r1N̄1

[
−1
0

]
,

c(i, j,k) 7→
[

x
y

]
c

=

[
1−2i

1

]
+ r1N̄1

[
1
0

]
,

for i = 1,2, . . . ,N1 and k = 1,2, . . . ,N3, and

N̄1 =

{
N1, if N1 odd
N1 −1, if N1 even

, (5)

while r1 is greater of the integers from the set {0,1}, determined for each i = 1,2, . . . ,N1,
that satisfies the inequality

−2(i−1)+ r1N̄1 < 0, i = 1 =⇒ r1 = 0. (6)

Parameters N̄1 and r1 are determined such that computation time of the SA1 is minimized.
Data schedule in the array SA1 that implements Algorithm 2 at the beginning of the

computation for the case N1 = 3, N2 = 2 and N3 = 5 is presented in Fig. 1.

3.2 The array SA2

The array SA2 computes C⃗T
1· = (A⃗1· ·B)T . The systolic algorithm that corresponds to this

computation is is obtained from the Algorithm 1 by substituting N1 = 1 (i.e. for i = 1). The
array SA2 is obtained for the direction µ⃗ = [011]T as degenerated 2D orthogonal SA (see
for example [1], [2], [4], [13], [19], [21]). In order to minimize space parameters of SA2
the systolic algorithm should be adjusted to the projection direction vector µ⃗ = [011]T (see
for example [1], [16], [20]). The algorithm adjusted over index variable j obtained from
Algorithm 1 by putting i = 1 has the following form
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Fig. 1. Data flow in SA1 for the case N1 = 3, N2 = 2 and N3 = 5

Algorithm 3
for k := 1 to N3 do

for j := 1 to N2 do
a(1, j,k+ j−1) := a(1, j−1,k+ j−1);
b(1, j,k+ j−1) := b(0, j,k+ j−1);
c(1, j,k+ j−1) := c(1, j,k+ j−2)+a(1, j,k+ j−1)∗b(1, j,k+ j−1);

where a(1,0,k +N3) ≡ a(1,0,k) ≡ a1k, b(0, j,k +N3) ≡ b(0, j,k) ≡ bk j, c(1, j, j − 1) ≡
c(0)1 j ≡ 0, for each j = 1,2, . . . ,N2 and k = 1,2, . . . ,N3.

The array SA2 is obtained according to the following formulas

PE 7→
[

x
y

]
=

[
k−1

1

]
a(1,0, j+ l −1) 7→

[
x
y

]
a

=

[
2 j+2k−3

1

]
+ r2N̄2

[
−1
0

]
,

b(0, j, j+ k−1) 7→
[

x
y

]
b

=

[
k−1

3−2 j− k

]
+ r2N̄2

[
0
1

]
,

c(1, j,0) 7→
[

x
y

]
c

=

[
1−2 j

1

]
+ r2N̄2

[
1
0

]
,

for j = 1,2, . . . ,N2, k = 1,2, . . . ,N3 and

N̄2 =

{
N2, if N2 odd,
N2 −1, if N2 even

(7)

while r2 is greater of the integers from the set {0,1}, determined for each j = 1,2, . . . ,N2,
that satisfies the inequality

−2( j−1)+ r2N̄2 < 0, j = 1 =⇒ r2 = 0. (8)

Data schedule in the array SA2 that implements Algorithm 3 at the beginning of the
computation, for the case N1 = 3, N2 = 2 and N3 = 5, is presented in Fig. 2.
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Fig. 2. Data flow in SA2 for the case N1 = 3, N2 = 2 and N3 = 5

3.3 The arrays SA3 and SA4

The arrays SA3 and SA4 compute C⃗(1) = A⃗·1 · B⃗1·. The systolic algorithm that corresponds
to this computation is is obtained from the Algorithm 1 by substituting N3 = 1 (i.e. for k =
1). The array SA3 is obtained for the direction µ⃗ = [110]T as degenerated 2D orthogonal
SA (see for example [1], [2], [4], [13], [19], [21]). In order to minimize space parameters
of the BLSA the systolic algorithm should be adjusted to the projection direction vector
µ⃗ = [110]T (see for example [1], [16], [20]). In the case of direction µ⃗ = [110]T it is
possible to perform adjustment over both index variable i and j. The algorithm adjusted
over index variable i obtained from Algorithm 1 by putting k = 1 has the following form

Algorithm 4
for j := 1 to N2 do

for i := 1 to N1 do
a(i, i+ j−1,1) := a(i, i+ j−2,1);
b(i, i+ j−1,1) := b(i−1, i+ j−1,1);
c(i, i+ j−1,1) := c(i, i+ j−1,0)+a(i, i+ j−1,1)∗b(i, i+ j−1,1);

where a(i, j+N2,1)≡ a(i,0,1)≡ ai1, b(0, j+N2,1)≡ b(0, j,1)≡ b1 j, c(i, j,0)≡ c(0)i j ≡ 0,
for each i = 1,2, . . . ,N1 and j = 1,2, . . . ,N2. The array that implements Algorithm 4 is
denoted as SA3.

The array SA3 is obtained according to the following formulas

PE 7→
[

x
y

]
=

[
j−1

1

]
a(i,0,1) 7→

[
x
y

]
a

=

[
1−2i

1

]
+ r1N̄1

[
1
0

]
,

b(0, i+ j−1,1) 7→
[

x
y

]
b

=

[
2i+2 j−3

1

]
+ r1N̄1

[
−1
0

]
,
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c(i, i+ j−1,0) 7→
[

x
y

]
c

=

[
j−1

3−2i− j

]
+ r1N̄1

[
0
1

]
,

for i = 1,2, . . . ,N1, j = 1,2, . . . ,N2. Parameters N̄1 and r1 are defined by (5) and (6), respec-
tively.

Data schedule in the array SA3 that implements Algorithm 4 at the beginning of the
computation, for the case N1 = 3, N2 = 2 and N3 = 5, is presented in Fig. 3.

Fig. 3. Data flow in SA3 for the case N1 = 3, N2 = 2 and N3 = 5

The algorithm adjusted over index variable j obtained from Algorithm 1 by putting
k = 1 has the following form

Algorithm 5
for j := 1 to N2 do

for i := 1 to N1 do
a(i+ j−1, j,1) := a(i+ j−1, j−1,1);
b(i+ j−1, j,1) := b(i+ j−2, j,1);
c(i+ j−1, j,1) := c(i+ j−1, j,0)+a(i+ j−1, j,1)∗b(i+ j−1, j,1);

where a(i+N1,0,1) ≡ a(i,0,1) ≡ ai1, b(i+N1, j,1) ≡ b(0, j,1) ≡ b1 j, c(i+N1, j,0) ≡
c(i, j,0)≡ c(0)i j ≡ 0, for each i = 1,2, . . . ,N1 and j = 1,2, . . . ,N2. The array that implements
Algorithm 5 is denoted as SA4.

The array SA4 is obtained according to the following formulas

PE 7→
[

x
y

]
=

[
1− i

1

]
a(i+ j−1,0,1) 7→

[
x
y

]
a

=

[
3−2i−2 j

1

]
+ r2N̄2

[
1
0

]
,

b(0, j,1) 7→
[

x
y

]
b

=

[
2 j−1

1

]
+ r2N̄2

[
−1
0

]
,

c(i+ j−1, j,0) 7→
[

x
y

]
c

=

[
1− i

3− i−2 j

]
+ r2N̄2

[
0
1

]
,

for i = 1,2, . . . ,N1, j = 1,2, . . . ,N2. Parameters N̄2 and r2 are defined by (7) and (8), respec-
tively.
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Data schedule in the array SA4 that implements Algorithm 5 at the beginning of the
computation, for the case N1 = 3, N2 = 2 and N3 = 5, is presented in Fig. 4.

Fig. 4. Data flow in SA4 for the case N1 = 3, N2 = 2 and N3 = 5

4 Performance analysis and discussion

In order to compare synthesized arrays, we use following performance measures:

• Number of processing elements, Ω

• Total execution time to compute matrix product, Ttot

• Efficiency, E

The results are summarized in Table 1. All arrays are optimal with respect to a number of
processing elements for a given problem size and execution time is minimal possible for
that number of processing elements. According to Table 1. we conclude that the efficiency
depends on the relation between loop boundaries N1, N2 and N3. When N1 > N3, the effi-
ciency of the array SA1 is good, but not in the reverse case. Moreover, when N3 >> N1
the efficiency of SA1 tends to zero, despite the fact that it has optimal number of PEs and
that execution time has been minimized. Similarly, the array SA2 has good efficiency when
N2 > N3, bad when N3 > N2 and tends to zero when N3 >> N2. This implies that when
N3 >> max{N1,N2} one should use the arrays SA3 or SA4 to compute matrix product,
since their efficiency do not depend on N3. The overall analysis of the performance mea-
sures given in Table 1 brings us to the following conclusion:

• When N1 > N2 > N3, the best choice is array SA1;

• When N2 > N1 > N3, the best choice is array SA2;

• When N1 > N3 > N2 or N3 > N1 > N2, the best choice is array SA3;

• When N2 > N3 > N1 or N3 > N2 > N1, the best choice is array SA4;

• In the square case, i.e. when N1 = N2 = N3 = N, the efficiency of all arrays is ap-
proximately 1

3 . However, it is not difficult to show that by reordering of initial com-
putations in arrays SA3 and SA4, the execution time can be reduced for the order of
N2, and hence improve the efficiency to E ≈ 1

2 .



Matrix Multiplication on Linear Bidirectional Systolic Arrays 19

SA1 SA2 SA3 SA4

Ω N3 N3 N2 N1

Ttot ≈ N2(N1 +2N3 −2) N1(N2 +2N3 −2) N3(N1 +2N2 −2) N3(N2 +2N1 −2)

E ≈ N1
N1+2N3−2

N2
N2+2N3−2

N1
N1+2N2−2

N2
N2+2N1−2

Table 1. Performance measures of the synthesized arrays

5 Conclusion

In this paper we have discussed the problem of rectangular matrix multiplication on bidi-
rectional linear systolic arrays. Four different systolic algorithms for computing matrix
product were proposed and corresponding BLSA, denoted as SA1, SA2, SA3 and SA4,
that implement them were designed. We have compared the arrays SA1, SA2, SA3 and
SA4 in term of efficiency. We conclude that the efficiency depends on the relation between
loop boundaries N1, N2 and N3.
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