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Abstract: We consider a nonlinear complex (large-scale) system with time delay. It is assumed
that the corresponding isolated subsystems are homogeneous, and the zero solutions of the sub-
systems are asymptotically stable when delay is equal to zero. By the Lyapunov direct method,
and the Razumikhin approach, delay-independent stability conditions for the complex system
are obtained. These conditions are formulated in terms of solvability of auxiliary systems of al-
gebraic inequalities. An example is given to demonstrate effectiveness of the presented results.
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1 Introduction

The problem of stability of nonlinear time-delay systems has been studied intensively
during the past decades, see, for example, [3, 6, 7]. Here there are two principal approaches,
the first one is based on the Lyapunov–Krasovskii functionals, the other one is based on the
Razumikhin theorem. These approaches were successfully applied by various authors to
the study of wide classes of systems, see [2–4, 6, 7] and the references cited therein.

Stability conditions may depend on delay, and in this case, we cannot guarantee that the
system remains stable when delay exceeds a certain value. In some applications, the small-
ness of delay cannot be assured. Moreover, the delay value may be unknown. Therefore,
it is important to have stability conditions under which the system remains stable for any
positive value of delay. Such conditions are known as delay-independent ones [3].

In this paper, a nonlinear complex (large-scale) system with time delay is considered.
It is assumed that the corresponding isolated subsystems are homogeneous, and the zero
solutions of the subsystems are asymptotically stable when delay is equal to zero. By the
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Lyapunov direct method, and the Razumikhin approach, delay-independent stability con-
ditions for the complex system are obtained. These conditions are formulated in terms of
solvability of auxiliary systems of algebraic inequalities. An example is given to demon-
strate effectiveness of the presented results.

2 Statement of the Problem

In the sequel, R denotes the field of real numbers, and Rn the n-dimensional Euclidean
space. For a given real number τ ∈ (0,+∞), let C([−τ,0],Rn) be the space of continuous
functions φ(θ) : [−τ,0]→ Rn. The Euclidean norm will be used for vectors. For elements
of the space C([−τ ,0],Rn) we will use the uniform norm ∥φ∥τ = maxθ∈[−τ,0] ∥φ(θ)∥.

Consider the system

żs(t) = fs(zs(t),zs(t − τ))+
m

∑
j=1

Qs j(t,xt), s = 1, . . . ,m. (1)

Here x(t) = (zT
1 (t), . . . ,zT

m(t))
T ∈Rn is the state vector, zs(t)∈Rns , n = n1+ . . .+nm; τ > 0

is a constant delay; the components of the vectors fs(zs,us) are homogeneous functions of
the orders µs > 1, defined for zs,us ∈Rns , and are continuous with respect to their variables,
and continuously differentiable with respect to us; the functionals Qs j(t,φ) are given and
continuous in the domain

{t ∈ R : t ≥ 0}×ΩH , (2)

where ΩH is the set of functions φ(θ) ∈C([−τ ,0],Rn) satisfying the inequality ∥φ∥τ < H,
0 < H ≤+∞. Moreover, we assume that the estimates

∥Qs j(t,φ)∥ ≤ βs j (∥ψ j∥τ)
αs j , s, j = 1, . . . ,m,

are valid in the domain (2). Here φ(θ) =
(
ψT

1 (θ), . . . ,ψT
m(θ)

)T , ψ j(θ) ∈ C([−τ,0],Rn j),
and βs j ≥ 0, αs j > 1; s, j = 1, . . . ,m. Thus, system (1) admits the zero solution.

Let x(t, t0,φ) stand for a solution of system (1) with the initial conditions t0 ≥ 0, φ(θ)∈
ΩH , and xt(t0,φ) denote the restriction of the solution to the segment [t−τ , t], i.e., xt(t0,φ) :
θ → x(t+θ , t0,φ), θ ∈ [−τ ,0]. In some cases, when the initial conditions are not important,
or are well defined from the context, we write x(t) and xt , instead of x(t, t0,φ) and xt(t0,φ),
respectively.

System (1) describes the dynamics of a complex system composed of m interconnected
subsystems [9]. The functions fs(zs,us) define the interior connections of subsystems,
whereas the functionals Qs j(t,φ) characterize the interaction between the subsystems.

Assumption 1. Let the zero solutions of the isolated delay free subsystems

żs(t) = fs(zs(t),zs(t)), s = 1, . . . ,m, (3)

be asymptotically stable.
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We will look for conditions under which the zero solution of (1) is also asymptotically
stable for an arbitrary value of τ > 0.

In [5], an approach for the stability analysis of essentially nonlinear delay free complex
systems was suggested. In [1], the results of [5] were strengthened and extended to wider
classes of systems. In the present paper, we will show that the approaches developed in [1,
5] permit to obtain delay-independent stability conditions for complex system (1).

3 Asymptotic Stability Conditions

Consider the first auxiliary system of inequalities

αs jh j ≥ µshs, s, j = 1, . . . ,m. (4)

Assumption 2. System (4) admits positive solutions.
Assumption 3. For subsystems (3), Lyapunov functions V1(z1), . . . , Vm(zm) are con-

structed, such that Vs(zs) is continuously differentiable for zs ∈ Rns positive definite and
homogeneous of the degree γs > 1 function, and the derivative of Vs(zs) with respect to s-th
subsystem from the family (3) is negative definite, s = 1, . . . ,m.

Assumption 4. The numbers hs = 1/(γs + µs − 1), s = 1, . . . ,m, satisfy the inequali-
ties (4).

Remark 1. In [8, 10] it is proved that the fulfilment of Assumption 1 implies the
existence of the required Lyapunov functions.

Remark 2. In view of the homogeneous functions properties, see [10], the estimates

a1s∥zs∥γs ≤Vs(zs)≤ a2s∥zs∥γs ,

∥∥∥∥∂Vs

∂zs

∥∥∥∥≤ a3s∥zs∥γs−1,

(
∂Vs

∂zs

)T

fs(zs,zs)≤−a4s∥zs∥γs+µs−1

hold for all zs ∈ Rns , where a1s,a2s,a3s,a4s are positive constants, s = 1, . . . ,m.
Next, consider the second auxiliary system of inequalities

−a4sηµs
s +a3s

m

∑
j=1

βs jη
αs j
j < 0, s = 1, . . . ,m. (5)

Remark 3. Coefficients a3s and a4s, s = 1, . . . ,m, in (5) depend on the constructed
Lyapunov functions V1(z1), . . . , Vm(zm).

Assumption 5. System (5) admits positive solutions.

Theorem 1 Let Assumptions 1–5 be fulfilled. Then the zero solution of system (1) is asymp-
totically stable for an arbitrary value of τ > 0.
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Proof. Choose a Lyapunov function for system (1) in the form

V (x) =
m

∑
s=1

λsVs(zs), (6)

where λ1, . . . ,λm are positive coefficients. Function (6) is positive definite.
Differentiating V (x) with respect to system (1), we obtain

V̇
∣∣
(1)=

m

∑
s=1

λs

(
∂Vs(zs(t))

∂zs

)T

fs(zs(t),zs(t))+
m

∑
s=1

λs

(
∂Vs(zs(t))

∂zs

)T m

∑
j=1

Qs j(t,xt)

+
m

∑
s=1

λs

(
∂Vs(zs(t))

∂zs

)T

(fs(zs(t),zs(t − τ))− fs(zs(t),zs(t)))

≤
m

∑
s=1

λs∥zs(t)∥γs−1

(
−a4s∥zs(t)∥µs +a3s

m

∑
j=1

βs j ∥z j(t)∥αs j

)

+
m

∑
s=1

λsa3s∥zs(t)∥γs−1
m

∑
j=1

βs j
∣∣(∥z jt∥τ)

αs j −∥z j(t)∥αs j
∣∣

+
m

∑
s=1

λsa3s∥zs(t)∥γs−1 ∥fs(zs(t),zs(t − τ))− fs(zs(t),zs(t))∥ .

It is known, see [1], that the fulfilment of Assumptions 2, 4 and 5 implies the existence
of positive numbers ã,δ0,λ1, . . . ,λm such that

m

∑
s=1

λs∥zs∥γs−1

(
−a4s∥zs∥µs +a3s

m

∑
j=1

βs j ∥z j∥αs j

)
≤−ã

m

∑
s=1

∥zs∥γs+µs−1 (7)

for ∥x∥< δ0.
Choose a positive integer l and a number δ ∈ (0,δ0). Assume that, for a solution x(t)

of (1), the inequality ∥x(ξ )∥ < δ , and the Razumikhin condition V (x(ξ )) ≤ 2V (x(t)) are
fulfilled for ξ ∈ [t − lτ, t]. Then

∥zs(ξ )∥ ≤ cs

m

∑
i=1

∥zi(t)∥
γi
γs , s = 1, . . . ,m, (8)

for ξ ∈ [t − lτ , t], where c1, . . . ,cm are positive constants.
With the aid of the Mean Value Theorem, it is easy to show that

∥fs(zs(t),zs(t − τ))− fs(zs(t),zs(t))∥+
m

∑
j=1

βs j
∣∣(∥z jt∥τ)

αs j −∥z j(t)∥αs j
∣∣

≤ ρs

(
∥zs(t)∥µs−1(χs(t)+ωs(t))+(χs(t)+ωs(t))µs
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+
m

∑
j=1

(
∥z j(t)∥αs j−1(χ j(t)+ω j(t))+(χ j(t)+ω j(t))αs j

))
, s = 1, . . . ,m.

Here

χs(t) = ∥zs(t)∥µs +
m

∑
k=1

∥zk(t)∥αsk ,

ωs(t) = (∥zst∥2τ)
µs −∥zs(t)∥µs +

m

∑
k=1

(
(∥zkt∥2τ)

αsk −∥zk(t)∥αsk
)
,

and ρs = const > 0, s = 1, . . . ,m. Further, for the functions ω1(t), . . . ,ωm(t) the similar
estimates can be found.

Successively applying this procedure l times and taking into the account inequalities (7)
and (8), we obtain that if l is sufficiently large, and δ is sufficiently small, then

V̇ (x(t))≤− ã
2

m

∑
s=1

∥zs(t)∥γs+µs−1.

Thus, the Lyapunov function (6) satisfies all the assumptions of Theorem 4.2 from [4].
Hence, the zero solution of (1) is asymptotically stable. This completes the proof.

4 Example

Let system (1) be of the form

ż1(t) =−z3
1(t − τ)+8zα

2 (t − τ), ż2(t) =−z9
2(t − τ)+β z5

1(t − τ), (9)

where z1(t),z2(t) ∈ R; τ > 0 is a constant delay; α > 1 is a rational with the odd denomi-
nator, and β > 0.

In this case, inequalities (4) can be written as follows

3
α

≤ h2

h1
≤ 5

9
.

Thus, the parameter α should satisfy the condition α ≥ 27/5.
Choose Lyapunov functions for the isolated delay free subsystems

ż1(t) =−z3
1(t), ż2(t) =−z9

2(t)

in the form V1(z1) = z8
1/8, V2(z2) = z10

2 /10. By the use of these functions, construct the
corresponding system (5). We obtain

−η3
1 +8ηα

2 < 0, −η9
2 +βη5

1 < 0.

Applying Theorem 1, it is easy to show that if one of the following conditions
(i) α > 27/5;
(ii) α = 27/5, and β < 1/32

is fulfilled, then the zero solution of (9) is asymptotically stable for any positive value of
delay.
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