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Complex exponential signal angle estimation based on angle
invariant combiner

Veljko Stankovi¢

Abstract: In order to achieve estimation performance limits, we often need to use computa-
tionally demanding estimation algorithms and/or signal information of higher order such as
cumulants. Our goal is to reduce the computational complexity of angle estimation, and to
achieve the Cramer-Rao estimation bound, and the maximum-likelihood signal-to-noise ratio
threshold by using iterative estimation where the most computationally demanding process-
ing is done as much as possible in the initialisation step, while in each iteration we require
less complex processing. This is achieved by using the angle invariant combinations of signal
autocorrelation samples for estimation.

Keywords: signal processing, direction of arrival estimation, frequency estimation, array pro-
cessing

1 Introduction

Estimation of parameters of a sum of complex exponential signals in additive noise is
an important and much studied problem with many practical applications. Various authors
have proposed numerous solutions for this problem with the goal of unbiased, and consis-
tent estimation from a finite set of signal samples, that achieves minimum estimation error
variance with the lowest computational load, and signal-to-noise ratio (SNR) threshold, [1],
(2], [3], [4].

The cost of achieving estimation performance limits is the complexity of the estimation
algorithm, and the pre-processing of the signal. In general, performance of the algorithms
that are used for parameter estimation of a sum of complex exponential signals depends
on the number of signal samples, and the number of snapshots, i.e. the number of signal
samples sets taken over a certain observation interval. Maximum likelihood (ML) estimator
is asymptotically optimal, and for a finite set of signal samples it has been shown to exhibit
the best resolution, accuracy, and the lowest SNR threshold, [2], [5]. However, the ML
estimator is also very computationally demanding, especially when the number of signals
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increases. As the number of signal samples increases, in the presence of additive white
Gaussian noise (AWGN), the ML estimates are approximately given by the maximum of
the less computationally demanding periodogram (PG), [6]. The high resolution subspace
algorithms are characterised by high SNR threshold that can be reduced at the price of
significantly higher computational complexity, [2], [4], [7]. Computationally attractive iter-
ative estimation algorithms refine suboptimal initial estimates through iterative maximising
of the likelihood derived cost function. Note that in this case the SNR threshold for which
the estimator performance degrades significantly is in general limited by the SNR threshold
of the algorithm that is used for initial estimation, [6]. Estimation based on higher order
spectrum or poly-spectra, that are obtained by taking the Fourier transform (FT) of the
highly computationally demanding cumulant sequence, can help us reduce the influence of
additive Gaussian noise on estimation, [8], [9], [10]. In the presence of AWGN we can use
other forms of signal information instead of cumulants to improve estimation performance
with lower processing requirements, [11], [12], [13].

In this letter, we use a quasi ML cost function under the assumption of AWGN to in-
troduce two sequences of modified signal information samples that are obtained as angle
invariant combinations (AIC) of signal autocorrelation samples. Our goal is to use the
proposed AIC sequences, that require less demanding processing than the cumulants, in
combination with a novel iterative estimator, to achieve the CRB, and the ML SNR thresh-
old with reduced computational complexity, by having the most demanding processing in
the initialisation step, and with much less complex processing in each iteration.

2 System model

We consider a system similar to [5] described by equation:
Y =AX+Zec VM, (1)

where N denotes the number of signal samples per snapshot, and M denotes the number of
snapshots. Matrix of signal observations ¥ € C¥>* is given by:

Y=[y » - Yv. ]T7 2)

where y, € CM*!, and (-)7 denotes the matrix transpose. Samples of AWGN are given in
Z that is equal to:

Z=[z2 z - =], 3)

where z, € C¥*!. The elements of Z are independent, identically distributed (i.i.d.) zero
mean complex Gaussian random variables with variance 0'12. Matrix A is equal to:

A=[ay; ay, - ayg | €CVK, “4)

where
ayp=[1 &% .. eI N=1)g }T e V1, )

)
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and ¢y is the unknown angle of the k-th complex exponential signal. We assume that for
large N, and small n, vectors ay_,  are orthogonal:

aZ—n,kl aN—n,kz /N = 0 4 k] # k2 (6)

We consider a scenario when signal amplitudes change in each snapshot. In this case, the
matrix of signal amplitudes is equal to:

X:Xp:[xnl Xp2 v xan]T? N

where x, ;. € CM*1 is the k-th signal vector of amplitudes per snapshot. We assume that the
average of the signal amplitudes is equal to:

1
i 13,%,1 20, (8)

and that the amplitude vectors corresponding to two different complex exponential signals

are orthogonal:
1

M
as the value of M increases. The matrix conjugate transpose is denoted as (-)7, and 1y
denotes the M x 1 vector with all elements equal to one. The assumptions in (8), and (9)
are commonly used in literature to satisfy the persistence excitation condition, [5], which is
necessary if the signal correlation matrix is defined as:

xH

pkXpk 20 ki # K, &)

R=YY? /M. (10

As a consequence, ML and subspace algorithms achieve estimation error bounds only for
large M, [5]. Let us introduce the following vector:

T
=1y v - oy ] e (11)

where N,, denotes the number of samples that we consider, 0 </ < N—N,,and 1 <N, <N.
Then, the samples of the autocorrelation sequence are defined as:

o) = (342,) 546/ (N =), (12

for0 <n <N-—1,and ry(n) = ry(—n)* for —(N —1) < n < 0. The complex conjugate is
denoted as (-)*.

3 Iterative sample shifted estimator

For K = 1, similarly to the generalised weighted linear predictor (GWLP) in [3], we can

write: Y
it =« [(yﬁ’ll) cgly‘Nlll}, (13)
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where £ denotes the phase angle of a complex number. The covariance matrix C, €

CWN-DMx(N=DM 5 equal to:
2 e io" 0
—ei® 2 e
C,=oc’ il Sl o
y=0; 0 — el 2 Y o

where @V is an angle estimate in the i-th iteration, I, denotes an M x M identity matrix,
and ® denotes the Kronecker product. The GWLP in [3] is initialised by the weighted least
squares (LS) solution over the received data sequence:

6(0) = argmq}n Hdiag(w)_l/2 (yl(\}zl —ej9°y1(\9) 1) sz (15)

which results in, [14]:
¢\ = 4ry(1). (16)

With diag(w) we denote a diagonal matrix with the elements of vector w on the main
diagonal. It is noted in [3] that other algorithms can be used for initialisation of GWLP.
Computation of GWLP requires one matrix-vector, and one vector-vector multiplication
per iteration. This results in (M(N — 1))2 +M (N — 1) complex multiplications per iteration.
Computational complexity of (13) can be reduced by setting the amplitude of the elements
on each diagonal of matrix Cy ! equal to the maximum absolute value of these elements.
Then, the expression in (13) reduces to:

N-2 s
e =u| ¥ wih Nkt 1)e M (17)
k=—(N-2)

where w%)( k) = w(k)/ws(0) is a window function (WF) of length N, and wy(k) is equal
to the maximum absolute value of the elements on the k-th diagonal of C T :

_ —1
ws(k)—lgr”rllgaﬁ_k‘[cy Im, (18)
where: .
ws(k) =Ay" Y (N—k—2m), Ny =[(N—k)/2], (19)
m=0

and Ay is a real constant that depends on N, |k| < N —1, and WE\A,? (—k) = WE\ P) (k). With
[-]i,; we denote the (i, j)-th element of a matrix, and with [x]| we denote integer greater than
or equal to x. We will call this WF arithmetic progressive (AP) because its k-th element is
proportional to the sum of arithmetic sequence.

The unknown angle is estimated in (17) as an angle of the FT of the weighted auto-
correlation function that is shifted by one sampling interval. When the iterative sample



Complex exponential signal angle estimation based on angle invariant combiner 111

shifted estimator (ISSE) in (17) is initialised with (p(o) from (16), the resulting estimator
has the same performance as the GWLP estimator. However one iteration of ISSE requires
only 2(N — 2) complex multiplications in addition to the processing in (12). In compari-
son to the GWLP, the estimation complexity of ISSE is reduced by having computationally
demanding processing only in the initial step.

The unknown angle is estimated in [2] by using the normalised likelihood function as a
probability density function (pdf), to obtain the mean value over all angle values. The algo-
rithm for initial angle estimation needs to have reasonably low computational complexity,
and the SNR threshold that is as low as possible. At high SNRs the initial angle estimates
need to be accurate enough for the second iterative step to converge. To reduce the process-
ing demands relative to [2], and improve the SNR threshold of the ISSE, we will use PG
as a pseudo-pdf for initialisation. If the unitary discrete FT (DFT) of the autocorrelation
function is given by:

1 Nl —j2E—nk
dn) = —— w(k)r(k)e “Mar (20)

V NNy k_%:Vl)

where N;s > 2 is the oversampling factor, the average PG (APG) initial estimate is given
by:

50 — X in—tan <Npin/2 | P (1) [0 20
Yin—npa| <Npin/2 | @) NNagi’

where n,,,, denotes the approximate location of the |®(n)| maximum. With N,,;, we denote
the minimum number of samples that correspond to the WF main-lobe width.

21

4 Angle invariant combiner of autocorrelation samples

By taking either the maximum or the angle of the same sum in (17) we obtain two different
estimators, PG or ISSE, respectively. Both PG, and ISSE require exhaustive search of an
angle that either maximises the PG or provides the combination of autocoreelation samples
with the lowest angle error. We note that from (17) we can write:

N-2
Y ekt D)e | < w0 (0)[r(1))
k=—(N-2)
N-2 N—1 , .
+ X w0 [t 1)e 4 4 (1 K)e?], (22)
k=1

from which we will try to replace the optimisation of a sum with respect to one parameter ¢,
with a set of simpler optimisations per sum components. The expression in (22) corresponds
to the sample shift value of n = 1. It can be generalised for any n # 1, and K = 1, as follows:

N—n—1
gs(m) =wi O+ Y Wi B [+ ke +rn—k)e ] (23)
k=1
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for 0 <n <N —1, and ¢,(n) = g;(—n)* for —N +1 < n < 0. Computational complexity
of (23) can be further reduced if we use the same correction angle for all n as for n = 0,
oc,En) = Ot,EO) = 04, and Bk(") = ﬁk(o) = B, Vn # 0. In this case, parameters oy, and f; are
chosen such that: ‘

(o, Br) = argmaxaeﬂNwﬁ:ﬂBRe (r(k)eﬂx) , (24)

where oy, = oy, U{£m/2MF DY, of = {0,7/2}, and integer N, > 0. In this way we
can substitute the problem of finding the value of ¢¥) in (17) over a continuous interval with
the one where we search for the optimum value of multiple parameters oy over a discrete set
of values. The expression in (23) is AIC of autocorrelation samples because the sequence
gs(n) is also complex exponential signal.

Similarly to the estimator in (16), which is based on the generalised weighted autocor-
relation function, we can define the AIC estimator as:

¢ = 4qy(1). (25)

For K = 1 we can use angle invariant property of sequence g(n) in optimisation in (15) to
define the LS-q estimator as:

N-2

p=4 Z w(k)qs (k) gs(k+1), (26)
k=0

which we can use as an initial angle estimate for the ISSE-q estimator, that is obtained from
(17) if we use g4(n) instead of r(n). In the same way we can obtain the APG-q estimator if
in (20), and (21) we use sequence g4(n).

For any K > 1 we introduce the following AIC sequence as:

N—n—1
am(n) = r(mw " (0) + k; wi (k) [F(n+ k) r(k)* + r(n—K)r(k)], 27

which is also a sum of complex exponential signals with the same angles as in (4).

S Successive component suppression

For K > 1, in every step we use previous angle estimates to suppress all complex exponen-
tial signals except one. Let us introduce a Toeplitz-Hermitian matrix Q € CV*V as:

0= [ 1(\?) 115\71) q1(V7N+1) } , (28)
where 1 ,
ay = an(l) -~ gul+N-1)]", (29)

and we need N > K to be able to resolve different complex exponential signals. Although
the ESPRIT algorithm does not achieve neither the CRB nor the MLL SNR threshold, we
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use it in combination with (28) for initial angle estimation because of its stable performance
relative to the minimum angle separation, and its relatively low computational complexity
in its original form. By using it with Q in (28) we achieve lower computational complexity,
because the eigenvalue decomposition (EVD) of @ is proportional to &’(N?) operations per
eigenmode, [15].

After the initial step, the successive component suppression (SCS) is performed in the
(i+ 1)-th iteration, and for the k-th signal, from (6), by using:

. iy f—\H
172””=<INA£>( ?) /N) Y, (30)

where 0
Ay :[51(\17?1 2‘/1(\11?/(71 az(\ll?kﬂ E,(\’,?K}, 3D

and El(\i)k is an estimate of (5) with the estimate of Eﬁ,gi) from previous iteration. The signal

~(i+1 .
observation matrix for the k-th signal Y,((Hr ) is then used to obtain the sequence é{sl:l) (n),
n=20,...,N—1 from (12), and (23). Next, we can use any of the previously proposed

algorithms, LS-q, APG-q, and ISSE-q, to estimate (ﬁ,ﬁiﬂ) in the current iteration.

6 Numerical results

The signal parameters are chosen to be N = 64, and M = 8. We use Taylor-Villneuve WF
with minimum side-lobe attenuation of —40dB, [1]. Signal amplitudes are modelled as
random uniformly distributed quadrature amplitude modulated (QAM) signals. We assume
that @) < --- < @¢. The minimum angle separation is fixed, and it is defined as a sim-
ulation parameter A@,,;,. The smallest angle value is uniformly distributed over interval
01 €[, — (K—1)A@uin], and @ = @1 + (k— 1)A@yin, k > 1. ISSE is stopped when
either |@ — @|/¢@ < 107> or if the maximum number of iterations Njssg = 5 is reached. We
have noticed in simulations that for high SNRs we do not need more than one to two itera-
tions. The maximum number of iterations for SCS is fixed to Nscs = 2. The oversampling
factor in (20) is set to Nys; = 8, and N, = 6. In our simulations we used between 5000 and
10000 simulation runs. The computation of the sequence in (12) requires approximately
MN? /2 of complex multiply, and add operations.

In Fig. 1 we compare performance of various estimators for K = 1. The biggest gains
for AIC relative to the LS-y estimator are obtained for N, = 0, which also has the lowest
computational complexity compared to the case when N, > 0. For N, = 0, the AIC estimator
requires 2(N — 2) complex add operations, and (N — 2) decisions based on real numbers,
while LS-y requires (N —2) complex add, and multiply operations. By using sequence g (n)
for N, =0, both LS-q, and ISSE-q that is initialised with LS-q (LS/ISSE-q) achieve much
lower SNR threshold than the GWLP. Calculation of ¢,(n) for N, = 0 requires (N —2)(N —
1) complex add operations, and N — 2 tests of real numbers. In total, the LS-q requires
O(MN? 4 N? + N) operations, as opposed to the GWLP that requires ¢(N) operations for
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Fig. 1. The MSE as a function of SNR with AWGN when signal amplitude varies over snapshots for K = 1,
N=064M=38.
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Fig. 2. The MSE as a function of SNR with AWGN for N = 64, M = 8, K = 2, and A@y,;, = n/16. Signal
amplitudes change over snapshots.

initialisation, and &’(M(N? + N)) operations per iteration. By initialising the ISSE-q with
APG-q (APG/ISSE-q) we achieve the ML SNR threshold with &(MN? + N2 + NlogN)
operations for initialisation, and &'(N) operations per iteration.

From Fig. 2 we see that by using the TLS-ESPRIT in combination with the ma-
trix Q in (28) (ESP-q), we achieve the SNR threshold of the ML estimator. The esti-
mates that are obtained by using the ESP-q are used to initialise the SCS. In total, cal-
culation of SCS/APG/ISSE-q requires approximately &'((M -+ K + 1)N?) operations for
initialisation, and &(K(M + K + 1)N?) operations per iteration which is not excessive
compared to either the EPUMA which requires ¢(N> 4+ MN?) operations for initialisa-
tion, and approximately &'(N> + K>N?) operations per iteration [4], or [7] which requires
O(MN? 4 K*N + K?) operations for initialisation, and &(N>K3 + N>K* + K®) operations
per iteration. The SCS/APG/ISSE-q achieves the CRB, and the SNR threshold of the ML
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estimator, and it is less computationally demanding.

7 Conclusions

In this paper, we have introduced two AIC sequences, novel ISSE, and APG for initialisa-
tion. They enable us to perform all of the computationally demanding processing only in the
initialisation step, while each iteration has only linear complexity. When we have multiple
complex exponential signals we successively estimate the angle of each signal separately,
with the computational load that is lower than that of the comparable algorithms. At the
same time we achieve the CRB, and the ML SNR threshold.
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